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The effects of the surface density field on wind-driven subtropical gyre circulation are 
examined within the content of a continuously stratified, potential vorticity 
conserving model. It is found that the ventilated fluid downwelled from the mixed 
layer is confined to a relatively thin layer in subtropical regions; the maximum 
depths of the ventilated region occur in the eastern and southern regions of the gyre. 
As a consequence of the relative thinness of the ventilated region in the wind-driven 
gyre, the transport associated with the surface density field is a small part of the total 
transport in subtropical regions. Thus the surface density field and the potential 
vorticity associated with ventilated fluid play a minor role in subtropical gyre 
dynamics and the potential vorticity of unventilated recirculating fluid is found to 
play the major role in subtropical gyre dynamics. A method of calculating the flow 
in the relatively large recirculating region is developed and the results of a specific 
example are discussed. 

1. Introduction 
I n  the past decade, there has been a renewal of interest in the baroclinic aspects 

of wind-driven subtropical gyre circulation. While a theory of the vertically averaged 
wind-driven basin-scale circulation has been accepted for decades, newly available 
data and theoretical approaches have increased our insight into the vertical structure 
of the wind-driven mid-latitude gyre; see Rhines (1986) for a review of recent 
progress in this area. 

Baroclinic effects are due both to the overall vertical variation in potential density, 
Apv, from a mean pa as well as to surface density variations of scale Aph (5 Apv). If 
D is the depth of the wind-driven gyre, IR and r the rotation rate and radius of the 
earth, and W the magnitude of the wind-driven surface Ekman suction velocity, then 
the wind-driven tilt of the isopycnal surfaces give rise to a transport of order 
gApwD2/252rpa. Setting this equal to the wind-driven transport (o( Wr))  yields an 
estimate for D of O(2QWr2/gApv/pa)a, approximately 1 km. Now if the imposed 
surface density field has a depth of influence H ,  then the transport associated with 
the surface density field is of order ( H / D ) 2  relative to the total transport. In  the 
present non-diffusive work, we take H to be the depth to which parcels leaving the 
surface sink. Although on dimensional grounds H is of order D the ratio HID may be 
numerically small. As the depth of influence H is determined by the flow itself, we 
cannot make an a priori estimate of the importance of the surface density field on the 
overall dynamics. Our principal objective in this work is to determine the spatially 
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varying ratio, H I D ,  and so determine the relative importance of the surface density 
field on gyre dynamics. 

The principal theoretical models that have been used to study baroclinic aspects 
of subtropical gyre circulation are layered models in which the potential vorticity is 
conserved in layers or portions of layers not exposed to direct wind forcing. These 
models are developed in the works of Rhines & Young (1981), Pedlosky (1983) and 
Luyten, Pedlosky & Stommel (1983). Unventilated models, in which the uppermost 
layer extends to the gyre’s lateral boundaries exclude the effect of the surface density 
field while ventilated models force H I D  to be order one by their formulation. Thus 
layered models, as thusfar developed, cannot be used to explore the relative 
significance of the surface density field. 

Recently, the author (Janowitz 1986; hereinafter referred to as J), developed a 
continuously stratified potential-vorticity-conserving model utilizing the potential 
density and vertical coordinates as independent and dependent variables respec- 
tively. In J, following a general formulation, the implications of a postulated 
form of the potential vorticity were explored. The results for that form of the 
potential vorticity function showed that some isopycnal surfaces were totally 
unventilated, some were partially and others were totally ventilated. As far as the 
form of the potential vorticity function, no effort was made to distinguish between 
parcels of surface origin, ventilated parcels, and parcels of sidewall origin, 
unventilated or recirculating parcels, despite their very different previous histories in 
dissipative layers. 

In  this paper, to study the effect of the surface density field on gyre structure, we 
shall partition the potential vorticity function as to the point of entry of a parcel into 
the gyre. The potential vorticity of unventilated recirculating parcels of sidewall 
origin will be taken to be a function of density alone ; this specification is consistent 
with the observations presented in Rhines (1986). The potential vorticity function of 
ventilated parcels downwelling from the free surface will initially be left completely 
general. This explicit partitioning of the potential vorticity function is essential to 
explore surface density effects. Following our numerical calculations, we shall 
compare model predictions with the results of Cox & Bryan (1984), Pedlosky & 
Young (1983), Kilworth (1987) and Huang (1986). Before turning to a partitioned 
model we briefly review the general development as given in J. 

2. Model development 
We consider a steady, inviscid, continuously stratified flow in geostrophic balance. 

The flow region is bounded from above by the base of the mixed-layer region, here 
taken as z = 0, where the surface density and the negative vertical Ekman suction 
velocity, wE(A,O) is specified. The flow region is bounded from below, a t  
z = - H,(A, d ) ,  the thermocline base, by a stagnant region of uniform potential 
density, pl .  The lateral boundaries are the northern and southern latitudes On and 8, 
at which wE = 0 and rigid vertical walls a t  the longitudes A = 0 and A,. At the eastern 
wall, A,, the zonal transport is taken to vanish. I n  what follows, the subscripts 0, b, 
e, w, n, s and p denote variables evaluated a t  the surface, thermocline base, eastern 
wall, western wall, On, 0, and the partitioning surface (discussed later) respectively. 
We take W to be the maximum value of IwEl, r the Earth’s radius, D a vertical scale, 
Ap/pl a scale for potential density variations. The density equation of state is taken 
to be p = p/C: + ps, where C, is a constant speed of sound and pe is the conservative 
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potential density field. With overbars denoting dimensionless parameters, we non- 
dimensionalize as follows. I z = Dz, oE = Wa,, 

(u, v) = ( W r / D )  (a, v3, 
Po = P1- 4 6  P = PlW + A P m ,  

dPl - = -9P1-9P1/CSz, dz 

I P = p - $  

We note that Ap/pl and D cannot be specified independently as a is specified. The 
variable-t replaces p used in J. Requiring that W/2QD, gD/C,2 be small compared to 
one, dropping the overbars on dimensionless variables, and utilizing the Bernoulli 
function, P, the governing equations in ( A ,  8, t )  coordinates, as derived in J, are as 
follows. 

s inex  x u = -VP,  ( 2 4  

pt = -2, ( 2 b )  

(2  c )  

( 2  d )  

( 2  e )  

(UZJh + (v cos 8 Z t ) @  = 0, 

w = U Z A / C O S  0 i- vz,, 

Q = en( )Jcos 8 + e,( ),. 

We note that the derivatives with respect to h and 0 are taken at constant t .  When 
( 2 a )  is used in ( 2 c ) ,  the continuity equation, the following potential vorticity 

(3a) 
equation results. Ptt = -sin@x(P,t). 

The potential vorticity function in ( 3 )  is the inverse of the conventional potential 
vorticity, i.e. n: = (-sinOp,)-l. The boundary conditions on (3a)  are as follows: 

a t  t = to,  z = - PJA, 8, to)  = 0, ( 3 b )  

w(h, 8, t o )  = %(A, 8 )  ; ( 3 4  

at t = 0, P(h,O,O) = 0 ;  ( 3 4  

at h = A,, l H b u d z  = r u z t d t  = 0. 

I n  J, conditions ( 3 c )  and ( 3 e )  can be combined into a single ‘Sverdrup’ condition. 

[‘Pfdt = -2sin28 w,(h’,O)dA’+C = S(h,8) .  s:’ (4) 

We note that M=@Hbvdz=xxQL3/sin8 

is the vertically integrated transport. If the constant C is chosen to be the zero, the 
thermocline base surfaces a t  A, and other points where the integral vanishes. This 
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leads to singular velocities a t  these points. As in J, we eschew this choice for C and 
take C > 0. Also we take he = 1.1, 8, = 12", On = 52O, and 

wo = -sin(4.5(8-8,)). (5) 

(6) 

A solution useful in this present paper is obtained by setting n = 1.0 in ( 3 a )  and 

Thus we vanishes at 8,, 8, and is negative for 8& < 8 < 8,. For this choice of wo 

S(h,O) = 2sin28sin (4.5(8-8,)) (h,-h)+C. 

integrating that equation subject to ( 3 b ) ,  (3d) and (4). We find 

P = sin8(t0t-$t2), ( 7 a )  

to = (3~/s in*  t$, (7 b )  

H ,  = ( 3 s  sin @, ( 7 c )  

P, = P(A,  8, t o )  = isin et; = *(9&2/sin @, (7 4 
H,(A,, 8 )  = ( 3 ~ s i n  @, (7 e )  

to(he, 8)  = (3c/sin2 8):, ( 7 f )  

u(Ae, 8,  t )  = - cos @(ito t-;tz)/sin 8, 179) 

u(h,, 8,  ito) = - cos 8ti/18 sin 8. (7 h )  

Although the solution given in ( 7 )  will be discussed in detail later, a few points 
should be discussed now. For a value of C = 0.15 we find that a t  h = 0, uo 2 0 for 
37" = 8: Q 8 Q 8, = 52". Further, nearly all the fluid a t  A = 0, 37" Q 8 Q 52", is 
outflowing from the western boundary (u > 0) or if inflowing, the values of P indicate 
that the limited region of inflowing parcels originated further to the north a t  h = 0 
and flowed clockwise back into the western boundary. Hence all parcels a t  h = 0, 
37" Q 8 Q 52" are of western boundary, as opposed to surface, origin. This point will 
be taken up again later. The results given in (7e ) - (7h)  hold a t  the eastern boundary 
( A  = he).  The thermocline depth increases monotonically to the north. The zonal 
speed is negative for 0 Q t Q +2t0 or - H ,  < z Q - iHb and positive above this depth. 
The outflow is most negative a t  t = it, ( z  = -92H,) with its magnitude given in ( 7 h ) .  
The total efflux from the eastern boundary below -illb, which is balanced by the 
influx above this depth is given by 

Q = d8 [-tHb u dz = 0.26C, 
Je, J - H ,  

and the mean outflow speed (Q divided by the entire area of outflow) is 0.53d. We 
shall use these results in $6. The choice of n = 1 implies that the dimensional 
conventional vorticity n,* = 252Ap/p1 D.  With the parameter a in equation (a) 
specified, if Ap/pl is specified, D and 7c: follow. If n,* and a are specified, Ap/pl and 
D follow. Reasonable values for a and n,* lead to Ap/pl = O( lop3) and D = O( 1 km) 
which are also reasonable. 

We now turn to the problem of specifying a partitioned model, one in which the 
point of origin of a parcel determines the nature of the potential vorticity function. 
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3. Specification of a partitioned model 
At the northern boundary we take ton to be independent of A. As wo = 0 there, 

v E 0 a t  8 = 8,. South of this boundary we require that to > ton so that isopycnal 
surfaces with t less than ton do not outcrop and are unventilated ; a deep unventilated 
region must therefore exist. Near the surface, fluid has just emerged from the mixed 
layer and is ventilated so that near the surface a ventilated region must exist. We 
now postulate that one deep ventilated and one shallower unventilated region exist 
for all A ,  8; the two-layer assumption is the most reasonable and simplest one we can 
make and conditions for the consistency of this model will be discussed. 

For - H,(A, 0) < z < -H,(A, 0), the fluid is unventilated and for -Hp < z < 0, 
the fluid is ventilated. At the partitioning depth H,(h, 8) ,  the density is t,(h, 8) ; both 
H p  and t ,  must be determined. At the northern boundary Hp = 0 and t ,  = ton. The 
fluid in both regions is assumed to be in motion as there is not observational evidence 
to the contrary. 

The potential vorticity in the unventilated region is taken to be homogenized, i.e. 
for 0 < t < t,, 7c = f(t) ( > 0). Normally df/dt < 0 so that the magnitude ofp, increases 
as we move upwards from the thermocline base through the unventilated region, 
although this is not required by the model. The potential vorticity in the unventilated 
region is totally general and is taken to  be consistent to the surface density field and 
the underlying dynamics. Both P and pt must be continuous as t increases through 
t,(A, 8) ; this condition ensures continuity of the velocity field across the partitioning 
surface. Isopycnal surfaces which outcrop will be above the partitioning surface in 
some regions, see figure 1.  

With f ( t )  specified we can integrate equation (3a) subject to ( 3 4  to obtain the 
following for 0 < t < t,(A, 8) 

rt 

pt = Hb(A, 8) -sin 0 f(s) ds, Jo 
p =H,(h,8)t-sine 

and a t  t = t, H, = H,(h, 8) -sin 8 

From ( 8 b )  we can show that if the zonal velocity is positive a t  some depth it must 
be positive a t  lesser depths. The specified Sverdrup function requires that the zonal 
transport be positive a t  the western boundary from 8, southwards to the latitude 
where (a/a0) we sin2 8 = 0. Hence the zonal velocity a t  the surface must be positive, 
fluid must emerge as unventilated from the sidewall, and Hp = 0 along the northern 
reaches of the western boundary in the range 8; < 8 < On where u(0, e;, to) = 0. With 
f( t )  given, equation (4) at h = 0 yields, 

sin28[( l'f(s)ds)ldt = X(0,O).  

This expression can be utilized to determine t,(O, 0) and 

Hb(0,8)( = sins(  ['fds). 
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FIGURE 1. (a)  Sketch of an outcropping isopycnel surface showing ventilated and unventilated 
(shaded) regions. ( b )  Sketch of the partitioning surfaces with points in (a )  indicated. 

The Bernoulli function for streamlines leaving the western wall a t  the surface with 
0; < Ow = 8 < 0, is given by 

where to = to (O,  Ow). 
Now consider the material surface composed of the streamlines leaving the western 

boundary a t  the surface ; the Bernoulli function is a constant along streamlines. This 
material surface is clearly part of the partitioning surface. Fluid above this surface 
cannot have originated on the western wall and must have downwelled from the free 
surface. We follow a parcel with density t, from the western wall a t  the surface as it 
moves southwards and downwards to an interior location A ,  8. Along this streamline 
t, = t,. Setting the in situ value of P, equation ( 8 6 ) ,  to Pw(tl) from (9) allows us to 
obtain, dropping subscripts on t, = t,, 

Also, 

or 

f(s)ds+(sinO-sinO,(t)) 

5 = 
H ,  

1 -sin O/sin Ow(t) 
1 +A(t )  sin O/sin O,(t) ’ 
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where 

I f f  is a constant, A = 1. I f f  = cl/ti then the magnitude of the density gradient 
vanishes a t  the thermocline base and increases upwards and A = 2. Equation (10) 
shows us that the partitioning depth is only a small fraction of the total depth. It is 
maximized when 8, = 8, a t  any latitude 8. If a streamline penetrates southwards to 
a latitude of 0 = 30°, then H,/H, < 0.22 for A = 1 and H p / H ,  < 0.16 for A = 2. The 
smallness of this ratio in the subtropical regions, a result which is independent of the 
ventilated potential vorticity function, implies, as we see below, that the ventilated 
field has a negligible effect on H ,  and hence H ,  and t,. The effect of the ventilated 
region on the partitioning fields is felt solely through the Sverdrup relation. 

s,'P; dt + [l P; dt = 

The first integral on the right-hand side is O(HE tp) while the second is O(H;(t ,- t ,)) .  
In  subtropical latitudes where H,/H, + 1, to--tp % O(1) and Hb % 0(1) ,  the second 
integral on the left-hand side of (11) is negligible ( O ( H g / H t ) )  relative to  the first. 
Neglecting this integral, one may solve for fib from (11) and so determine H ,  and t,. 

We conclude that in subtropical regions, if dfldt < 0, the normal case, the 
ventilated region is thin and the surface density fields has a negligible impact 
(O(H, /H, )2 ) )  on the thermocline depth, the partitioning fields, and the flow in the 
unventilated region ( -Hb < z < -Hp). The velocity a t  the base of the ventila- 
tion region is O(Hbt,) and the changes in velocity from z = -H,  to the surface is 
O(IVtol H,). Hence the relative effect of the surface density field on surface velocities is 
O((Vt,l Hp/Hbtp); this is greater than the effect of surface density on H ,  and Hp but 
is still small in subtropical regions. Hence the unventilated vorticity field and the 
Sverdrup function are the principal determinants of the motion in subtropical 
regions. 

An inverse procedure can be used to determine the flow in these regions. A t  a given 
latitude, 8, we choose a value for H,. We then find a value for t ( =  t,) which sets the 
in situ value of P (equation (8 b)) equal to P,(t) (equation (9)) ; with H,, 8, and t, now 
known, we find H ,  from (8c). Neglecting the second integral on the right-hand side 
of ( l l ) ,  we use this equation to determine S and hence h where the chosen value of 
H ,  exists and so complete the solution in the recirculating region a t  8,h. 

The results of J and the following section indicate that the material surface 
composed of fluid originating at h = 0, 8: < 8 < 8, covers all but the extreme 
southern and southeastern portions of the gyre. Streamlines originating a t  h = 0, a t  
z = 0, very near 8,, end on the eastern boundary while streamlines originating further 
south on the western boundary also terminate there after looping clockwise through 
the interior. A streamline with density tZ and P = P,(t,*) leaving near the northern 
boundary will just graze the eastern boundary a t  8: before returning to the western 
boundary, see figure 2. The southern leg of this grazing streamline forms the 
southern boundary of the portion of the partitioning surface formed by streamlines 
of western boundary origin. The remainder of the partitioning surface is composed 
of streamlines of eastern-boundary origin issuing forth for 8 < 8,* a t  the depth where 
the zonal velocity vanishes. 

The results in J as well as the next section show that while the zonal transport 
vanishes a t  the eastern boundary, deep waters emerge from this boundary (u < 0) 
while fluid nearer the surface flows into the boundary, see figure 3. We consider a 
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FIGURE 2.  Sketch of streamlines in the partitioning surface. Solid lines are of western origin 
while dashed lines are of eastern origin. 

H n  

u = o  

I 

FIGURE 3. Sketch af zonal velocity at eastern boundary as viewed from the west. The shaded area 
is outflowing and solid lines are intersections of isopycnal surfaces with the eastern boundary. 

streamline originating a t  h = A, south of 8: a t  the point u = 0. Fluid below this point 
is unventilated and is flowing westward in the gyre while the fluid above this 
streamline is of surface origin as it cannot have originated on the western boundary 
nor a t  the eastern wall further to the north, as this is an inflow region for these 
isopy cnals. 

Thus the partitioning surface is composed of streamlines of surface-western- 
boundary origin north of the southern leg of the grazing streamline and of eastern- 
boundary origin south of this leg. We note that only if to is specified to be less than 
the computed value oft,, for a given f(t), does this procedure break down. In  the next 
section we perform a simple calculation which demonstrates the procedure outlined 
above and verifies our conclusions about the small impact of the surface density field 
on the flow in subtropical regions. 
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FIGURE 4. The surface pressure, Po, and latitude a t  the western boundary ( A  = 0 ) ,  as functions 
of surface density to .  

4. An example of partitioned model 
To demonstrate the insensitivity of partitioning fields to the surface density fields 

in subtropical regions, we choose the unventilated potential vorticity function, f(t), 
to be equal to 1.0 and the ventilated function to be a constant, y (< 1 ) .  We note that 
the conventional ventilated vorticity equals l / y  (>  1) .  The potential vorticity 
equation ( 3 a )  can be integrated subject to ( 3 b ) ,  ( 3 d ) ,  and the continuity of P and pt 
across t ,  to yield the following results: 

P = H,(A,#)t-$sin6t2, 

H ,  = H, - sin 6t,, 

Pp = P ( A ,  8, t,) = t,(H,-+sinOt,); 

P = P, +H,(t  - t P )  - sin O(t -  t p )2 ,  
for t ,  < t < to ,  

to = t,+H,/ysin6, 

Po = P(h,O,t,) = Pp+H;/2ysin8. 

The Sverdrup condition requires 

or 

&(A, 0) = (H3,--Hi)/3sin6+Hi/3ysin6, ( 1 3 a )  

(13b)  HE + (( 1 - y ) / y  ) HE = 3S( A, 6) sin 8. 
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FIGURE 5. Grazing streamline characteristics as a function of y .  (a)  The density of the grazing 

streamline. ( b )  The latitude of the grazing streamline a t  A = A,. 

In  figure 4, we present P,(t) and B,(t) as functions o f t ;  these results follow from 
equations (?a, 6 )  with h = 0. As indicated earlier north of the southern leg of the t,* 
streamline we choose a value for sin 8 and H ,  and determine t, by setting the in situ 
value for P,  equation (12u) ,  equal to P,. In  practice we find t ,  by increasing t above 
to, until the two Bernoulli functions are equal. We then use (12b) to find H,. As the 
left-hand side of (13b) is known exactly we solve this equation for S(h, 8) and hence 
A.  The Sverdrup equation can thus be solved exactly. At each latitude eleven values 
of H ,  are specified and h computed for each depth. To find the thermocline depth a t  
a prescribed A ,  we linearly interpolate using values of H ,  a t  bracketing longitudes 
previously calculated. The value of h at  this interpolated value of H ,  is then 
computed and is generally within 0.0001 of the prescribed value. 

We must now determine the grazing streamline characteristics and the partitioning 
surface south of the southern leg of this streamline. For a partitioning streamline 
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40 - 

30 - 
6, 

20 - 

10- 

0 I I I I I 1 -  

originating on the western boundary P,(t) = +sinO,(t) t2,  with the p subscripts 
dropped. From (12 b, c )  along this streamline 

(14a) H -1 - ,(sin 0, +sin 8) t ,  

Hp = +(sin 8, - sin 8) t. (14b)  

(( 1 + T ) ~  + (( 1 - y ) / y )  ( 1  - r ) 3 )  (t sin ~9,(t))~ = 24S(h, 8) sin 8, (15a)  

where r = sin B/sin 8,Jt). (15b) 

Using this expression in (13b) ,  the Sverdrup condition leads to 
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FIGURE 7. The non-dimensional thermocline depth, H,. (a )  y = 1.0, ( b )  y = 0.2. 

With t fixed, (15) is the trajectory of a partitioning streamline of western boundary 
origin which may be solved for A as a function of 8 and t .  For the grazing streamline, 
a t  A = A,, 8 = 8,*, S = C and dA/d8 = 0. These two conditions allow us to solve for tz 
and 8: as function of y.  These results are shown in figure 5.  As y decreases from 1.0, 
t: decreases slightly and 8: increases. For any value of y we can determine H ,  at  A, 
and 8: using (14a) evaluated a t  8:. 

The partitioning surface south of the grazing streamline consists of the material 
surface composed of streamlines originating at A, south of 8: at the value of t = t, 
where u = 0. Hence a t  A,, for 8 < 8:, from (12a) we find t, = 2H,,/cos 8. Hence a t  A, 

(16) 

Substituting this expression into (136) a t  A,(# = C) yields a first-order ordinary 
differential equation for Hb(8)  a t  A, south of 8: with H,(8,*) known. This equation can 
be integrated numerically from 8: southwards to  8, to determine H ,  then t, and 
Pe(t,). We note that for y = 1, H ,  = (3CsinB)f and t, = 2Hb/3sin 8. In figure 6 we 
present the results for y = 1.0 and y = 0.2 for C = 0.15. 

The partitioning fields in the interior south of the grazing streamline are 
determined by choosing eleven values of H ,  a t  a fixed 8 and then finding the value 
of t  = t, which sets the in situ value of P (12a) equal to Pe(t). With t, and hence H ,  

H ,  = H ,  - sin Bt, = H ,  - 2H,,sin 8/cos 8. 
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FIGURE 8. The partitioning density field, t,. (a) y = 1.0, ( b )  y = 0.2. 

A 

determined the Sverdrup relation is used to  determine h for the selected value of H ,  
and 8. Interpolation is then used to find the partitioning fields a t  specific values of 
A. 

5. Numerical results 
We now specify parameter values. We take W = lop6 m/s, r = 6370 km, g = 9.8 

m/s2, 2 0  = 1.45 x 10-4/s, Ap/pl = 0.56 x lop3 and C = 0.15. We find D = 1040 m and 
ton = 0.898. 

We present calculations for y = 1.0 and 0.2. In  figures 7, 8 and 9 we present the 
thermocline depths for both values of y ,  the partitioning density for both cases, and 
the partitioning depths for both cases. For both values of y ,  H p  is small north of 8 = 
25" and decreases with latitude. The ventilated fluid is thus confined to a relatively 
thin layer north of this latitude. Further the difference in H,, H,, and tp for y = 1.0 
and y = 0.2 is a t  most 3% at 8 = 25", a t  most 1.5% a t  8 = 30" and considerably 
smaller further to the north. The insensitivity of the partitioning fields and H ,  to the 
ventilated vorticity north of 0 = 25" is consistent with our basic conclusions. As we 
have shown, in this region t ,  = t ,(H,, 0 )  and H p  = H,(H, ,  0 ) .  The ventilated vorticity 
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FIGURE 9. The non-dimensional partitioning dept,h field, H,. (a) y = 1.0, ( b )  y = 0.2. 

does not affect these two functions. Only when we satisfy the Sverdrup condition 
does y appear. I n  (13 6 )  we note that the relative effect of y is (1 - y )  H : / y H i .  Since 
H p / H ,  decreases rapidly as 8 increases the effect of y decreases even more 
dramatically. 

We next turn to the surface density and surface Bernoulli fields presented in 
figures 10 and 11 respectively. The difference in to for the y = 1.0 and y = 0.2 case is 
significant and follows from (12 e ) ,  wiz. to = H , / y  sin 8 + t,. If H ,  and t ,  are nearly the 
same for the two cases, then Ato, the change in to between the two, is 4Hp/sin8. At 
8 = 30" with H,, - 0.15, Ato = 1.2. The surface pressure fields show some variation 
with y and AF, = +Hp Ato or about 8 % of the change in to. 

We next turn to gyre structure and flow. I n  figures 12 to  15 we show the depths 
and pressure fields for the y = 0.2 case for t = 0.5, 1.0, 1.5 and 2.5. The unventilated 
regions are shown shaded. The depth of the t = 0 surface is of course H,. For t = 
E < 1, P = H , e +  O(e2) so the H ,  contours (figure 7 b )  are streamlines for small values 
of t .  The results for H(h,  8, t )  and P(h,  8, t )  are in general quite similar to those in J. 
The ventilated surfaces whose outcrop lines intersect h = 0 north of 37", i.e. the t = 
1.0 and 1.5 surfaces, have unventilated regions shades. The P = 0.822 streamline in 
the t = 1.5 surface separates ventilated and unventilated regions. The location of the 
ventilated region is consistent with data given in Rhines (1986) for a partially 

A 
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FIGURE 10. Contours of constant to, the negative of the surface density anomaly. (a)  y = 1.0, 
( b )  y = 0.2. 

ventilated surface. Ventilated waters occupy the shallowest regions of this isopycnal 
surface. Ventilated fluid fills much of this shallow surface. The t = 2.5 surface is 
entirely filled with ventilated Auid most of which flows from the outcrop line into the 
western boundary. 

As we have seen: the partitioning fields are relatively insensitive to the ventilated 
potential vorticity in subtropical regions. 

6. Comparison with earlier work 
In this section, we compare our model predictions with those of several other 

works. We briefly review those of our predictions which will be used for comparisons. 
Our model predicts clockwise motion in all layers above the stagnant homogeneous 
layer; flow occurs in totally or partially ventilated surfaces as well as in those 
surfaces which are totally unventilated. The thermocline base, with the use of 
parameters specified in the previous section, ranges from a depth of 1200 tn a t  the 
eastern wall a t  40 O N  to a depth of 460 m at  the southern boundary of the gyre. At 
the eastern boundary where the zonal transport is taken to vanish, there is weak 
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FIGURE 11. The surface pressure field, Po. (a )  y = 1.0, ( b )  y = 0.2. 
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outflow a t  depth and inflow nearer the surface. The maximum outflow speed is 0.77 
cm/s a t  8, and the mean outflow speed (0.536) is 0.09 cm/s. The total outflow from 
this boundary a t  depths below ( -&Hb(8)) is 1.6 Sverdrups (0.266'). The maximum 
change in Bernoulli functions as we move along the eastern boundary down an 
isopycnal surface which outcrops a t  8, to the point of maximum P is only 1.5mb 
(0.43 (9C2/sin 8,);) for surfaces outcropping near the northern boundary. The overall 
change in P from the outcrop point a t  8,, to 8, is 0.35 mb. This small change reflects 
the weak zonal velocities a t  h = A,. The east to west variation of P in these surfaces 
which outcrop near en is typically 30mb. At the western boundary our theory 
predicts outflow a t  all depths ( - H ,  < z < 0) to the north, inflow a t  all depths to the 
south and a transitional region with inflow a t  depth and outflow nearer the surface. 
We first compare our results to Cox & Bryan (1984; hereinafter referred to as CB). 
Theirs is a time-dependent finite-difference numerical model which is run to steady 
state. The model includes nonlinear terms in the horizontal momentum equations, 
and horizontal and vertical turbulent mixing terms in both the horizontal momentum 
equations and the density equation; the turbulent effects are modelled using 
constant eddy diffusivities. The model is driven by wind-stress and buoyancy-flux 
conditions applied at the surface (for their T,, = 1 case). The domain extends from an 
eastern to  a western wall and includes gyres to the north and south of the subtropical 
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FIGURE 12. (a )  The dimensionless depth, H ,  and ( b )  the Bernoulli function, P ,  for y = 0.2 in the 
surface t = 0.5. 

gyre ; our comparisons are limited to  the subtropical gyre. Further their calculations 
include both the dissipative upper mixed layer as well as the dissipative sidewall 
regions. As our calculations exclude these regions, comparisons are generally made 
outside the mixed and sidewall regions. We note that small changes in density do 
occur in their model predictions outside these boundary layers but the major changes 
in density occur in the dissipative regions. Our comparisons will be made for their 
T,, = 1 case wherein the motion is both wind and buoyancy driven. 

Figure 2 of CB for z = 0 shows the surface pressure field. This is in good qualitative 
agreement in the subtropical gyre portion of their results with our figure 11 and 
shows inflow a t  the surface at  the eastern boundary. Figure 5 of CB shows the 
velocity field in the eastern zone as a function of latitude. This figure shows weak 
zonal outflow a t  depth and inflow nearer the surface with the zero zonal flow curve 
increasing in depth to the north; again this is in agreement with our model 
predictions. Figure 4 of CB shows the velocity a t  mid-longitude. Parcel speeds are 
finite above, say, 750 m;  in particular, Flows are finite near the 500 m depth and in 
the southern zone in a layer of fluid that does not outcrop in the subtropical gyre, i.e. 
in an unventilated region. This is consistent with our predictions of clockwise flow in 
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FIGURE 13. (a,) The dimensionless depth, H ,  and (b )  the Bernoulli fnnction, P, for y = 0.2 in the 
surface t = 1.0. 

all isopycnal surfaces, ventilated or not. Figures 9 ( b ,  c ,  d )  of CB show streamline 
patterns in three isopycnal surfaces which outcrop near the northern gyre boundary 
which is about 48 O N  in their model. Clockwise flow is evident in all gyrcs. Overall 
changes in P in these surfaces range from 25 to 30 mb. The shrinking of the 
recirculating region is evident as surfaces outcrop further to the south. No inflow or 
outflow is evident on the eastern boundary, but the contour interval of 4 mb is too 
large to show the small variations in P predicted by our model a t  h = A,. 

We next turn to comparison with layered models. The model of Pedlosky & Young 
(1983) is chosen for comparison purposes as it is more general than that of Rhines & 
Young (1981) in allowing finite variations in the depth of isopycnal surfaces. 
Pedlosky & Young also include a deep unventilated layer as well as a latitudinal 
variation in the surface density field. Layered models typically require that the zonal 
speed vanish in each layer a t  the eastern boundary ; in our work only the net zonal 
transport is required to vanish. The vanishing of the zonal velocity in each layer a t  
h = A, in the work of Pedlosky & Young has, as an immediate consequence, the 
confinement of flow in unventilated layers to the northwest quadrant of the gyre. 
This is in direct contrast with our result that flow exists everywhere in the 
unventilated region. The evidence as to the proper eastern-boundary conditions from 
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FIGURE 14. (a) The dimensionless depth, H ,  and ( b )  the Bernoulli function, P ,  for y = 0.2 in the 
surface t = 1.5. 

A 

the BC numerical model is mixed. While figures 2 and 5 of CB indicate that there is 
inflow and outflow a t  the eastern boundary consistent with our results, figure 9 (b,  c,  
d )  leads to an uncertain result because of the relatively large contour interval taken 
for the Bernoulli function. However figure 4 of CB which shows flow in unventilated 
regions far from the northern gyre boundary is consistent with our results but in 
direct contrast to the stagnant flow prediction of Pedlosky & Young (1983). 

The results of the present work are consistent with the those of Cox & Bryan (1984) 
though they contrast sharply with the results of Pedlosky & Young (1983); the 
contrast is traced to  the eastern-boundary condition, a condition which is unclear a t  
the present time. 

We next turn to  two recent continuously stratified models. The model of Killworth 
(1987) utilizes the density as an independent variable and extends the model 
developed in J to an infinite depth ocean. More relevant to the present work is the 
section in that paper wherein an unventilated layer with R = f(t) is introduced above 
the stagnant homogeneous layer and below an active region where 7c = G(t )  P .  The 
potential vorticity equation is then integrated downward through the active region 
from the surface where a surface-density and Ekman-section condition is applied. 
The potential vorticity equation is integrated upwards through the unventilated 
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FIGURE 15. (a )  The dimensionless depth, H ,  and (6) the Bernoulli function, P ,  for y = 0.2 in the 
surface t = 2.5. 

region to that density t, where both P and pt as given from both integrations match. 
However, the t, field of Killworth is not the same as t, given here, as fluid 
immediately above t, may originate either a t  the surface or the sidewall. Isopycnal 
surfaces that outcrop and intersect the western boundary in the northern regions 
where the surface zonal flow is outwards must contain regions of fluid of western- 
boundary origin; in the present work we take 7c = f ( t )  in the unventilated portion of 
outcropping isopycnal surfaces as well as in deeper totally unventilated surfaces. In 
Killworth this partitioning in an isopycnal surface is not imposed. As t, from 
Killworth and t, from the present work do not have the same meaning we attempt 
no comparisons. 

A second recent continuously stratified model to  be considered is that of Huang 
(1986). He utilizes z as the independent variable and three data derived forms of x ; 
the form of x utilized depends strictly on the density and is not partitioned with 
respect to P as in the present work. The potential vorticity equation is integrated 
downwards from the base of the mixed layer a t  which point a surface-density and an 
Ekman-suction-derived condition are specified ; no lower boundary condition is or 
can be imposed. The solution is assumed to be valid for all z a t  values of h and 0 where 
the vertical velocity becomes small a t  great depths and is assumed valid in the upper 
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portion of the water column if the vertical velocity does not tend to zero a t  great 
depths. This ignores the possibility that a lower boundary condition imposed a t  a 
specific value of z or density may affect the flow throughout the water column. As the 
focus is not on partitioning of the flow, no comparison with this work is undertaken. 

7. Conclusions 
As we have shown in the general case and verified in a calculation, the flow in most 

of the subtropical gyre is insensitive to the surface density field away from the 
surface outflow region of the western boundary. The principal determinants of the 
motion are the Sverdrup function and the unventilated potential vorticity function. 

R E F E R E K C E S  

Cox, M. B. & BRYAN, K. 1984 A numerical model of the ventilated thermocline. J .  Phys. Oceanogr. 

HUANG, R. A. 1986 Solutions of the ideal fluid thermocline with continuous stratification. J .  Phys. 

JANOWITZ, G .  S. 1986 A surface density and wind-driven model of the thermocline. J .  Geophys. 

KILLWORTH, P. D. 1987 A continuously stratified non-linear ventilated thermocline. J .  Phys. 

LUYTEN, J. R., PEDLOSKY, J. & STOMMEL, H. 1983 The ventilated thermocline. J .  Phys. Oceanogr. 

PEDLOSKY, J. 1983 Eastern boundary ventilation and the structure of the thermocline. J .  Phys. 

PEDLOSKY, J. & YOUNQ, W. R. 1983 Ventilation, potential vorticity homogenization, and the 

RHINES, P. B. 1986 Vorticity dynamics of the oceanic general circulation. Ann. Rev. Fluid Mech. 

RHINES, P. B. & YOUNG, W. R. 1981 Theory of the wind-driven circulation, I : Mid-ocean gyres. 

14, 674487. 

Oceanogr. 16, 39-59. 

Res. 91, 51 11-51 18. 

Oceanogr. 17, 1925-1943. 

13, 292-309. 

Oceanogr. 13, 2038-2044. 

structure of ocean circulation. J .  Phys. Oceanogr. 13, 202&2037. 

18, 433-497. 

J .  Mar. Res. 40, suppl. 55S.596. 




